
 NETWORK ALGORITHMICS

Network algorithmics is the use of an interdisciplinary systems approach, seasoned with

algorithmic thinking, to design fast implementations of network processing tasks at servers,

routers, and other networking devices

Network algorithmic is a fundamental way of crafting solutions to internet bottlenecks. It

provides an insight to design different implementations for specific contexts and to deal with

new bottlenecks that will undoubtedly arise in the changing world of networks. Network

algorithmics goes beyond the design of efficient algorithms for networking tasks, though this has

an important place. In particular, network algorithmics recognizes the primary importance of

taking an interdisciplinary systems approach to streamlining network implementations. The

problems addressed by network algorithmics are fundamental networking performance

bottlenecks. The solutions advocated by network algorithmics are a set of fundamental

techniques to address these bottlenecks.

NETWORK BOTTLENECKS

The main problem is how to make networks easy to use while at the same time realizing the

performance of the raw hardware. Ease of use comes from the use of powerful network

abstractions, such as socket interfaces and prefix-based forwarding. Unfortunately, without care

such abstractions exact a large performance penalty when compared to the capacity of raw

transmission links such as optical fiber. To study this performance gap in more detail we

examine two fundamental categories of networking devices, endnodes and routers.

Endnode Bottlenecks

Endnodes are the endpoints of the network. They include personal computers and workstations

as well as large servers that provide services. Endnodes are specialized toward computation, as

opposed to networking, and are typically designed to support general-purpose computation.Thus

endnode bottlenecks are typically the result of two forces: structure and scale.

• Structure: To be able to run arbitrary code, personal computers and large servers typically have

an operating system that mediates between applications and the hardware. To ease software

development, most large operating systems are carefully structured as layered software; to

protect the operating system from other applications, operating systems implement a set of

protection mechanisms; finally, core operating systems routines, such as schedulers and

allocators, are written using general mechanisms that target as wide a class of applications as

possible. Unfortunately, the combination of layered software, protection mechanisms, and

excessive generality can slow down networking software greatly, even with the fastest

processors

• Scale: The emergence of large servers providingWeb and other services causes further

performance problems. In particular, a large server such as aWeb server will typically have

thousands of concurrent clients. Many operating systems use inefficient data structures and

algorithms that were designed for an era when the number of connections was small.

Bottleneck Cause Sample solution

Copying Protection Protection, structure Copying many data blocks

without OS intervention e.g

RDMA

Context switching Complex scheduling User-level protocol

implementations

Event driven web servers.

System calls Protection , structure Direct channels from

applications

to drivers (e.g., VIA)

Timers Scaling with

number of timers

Timing wheels

Demultiplexing Scaling with

number of endpoints

BPF and Pathfinder

Checksums (CRC) Generality

Scaling with link speeds

Multibit computation

Protocol code Generality Header prediction

Figure above previews the main endnode bottlenecks , together with causes and solutions.

The first bottleneck occurs because conventional operating system structures cause packet data

copying across protection domains; the situation is further complicated in Web servers by similar

copying with respect to the file system and by other manipulations, such as checksums, that

examine all the packet data. The second major overhead is the control overhead caused by

switching between threads of control (or protection domains) while processing a packet.

Networking applications use timers to deal with failure. With a large number of connections the

timer overhead at a server can become large. Similarly, network messages must be

demultiplexed (i.e., steered) on receipt to the right end application. Finally, there are several

other common protocol processing tasks, such as buffer allocation and checksums.

Router Bottlenecks

The techniques previewed apply equally well to any other network devices, such as bridges,

switches, gateways, monitors, and security appliances, and to protocols other than IP, such as

Unlike end nodes, these are special-purpose devices devoted to networking. Thus there is very

little structural overhead within a router, with only the use of a very lightweight operating system

and a clearly separated forwarding path that often is completely implemented in hardware.

Instead of structure, the fundamental problems faced by routers are caused by scale and services.

Fiber Channel.

• Scale: Network devices face two areas of scaling: bandwidth scaling and population scaling.

Bandwidth scaling occurs because optical links keep getting faster, as the progress from 1-Gbps

to 40-Gbps links shows, and because Internet traffic keeps growing due to a diverse set of new

applications. Population scaling occurs because more endpoints get added to the Internet as more

enterprises go online.

• Services: The need for speed and scale drove much of the networking industry in the 1980s and

1990s as more businesses went online (e.g., Amazon.com) and whole new online services were

created (e.g., Ebay). But the very success of the Internet requires careful attention in the next

decade to make it more effective by providing guarantees in terms of performance, security, and

reliability. After all, if manufacturers (e.g., Dell) sell more online than by other channels, it is

important to provide network guarantees—delay in times of congestion, protection during

attacks, and availability when failures occur. Finding ways to implement these new services at

high speeds will be a major challenge for router vendors in the next decade.

Bottleneck Cause Sample solution

Exact lookups Link speed scaling Parallel hashing

Prefix lookups Link speed scaling

Prefix database size

scaling

Compressed multibit

tries

Packet classification Service differentiation

Link speed and size

scaling

Decision tree

algorithms

Hardware parallelism

(CAMs)

Switching Optical-electronic

speed gap

Head-of-line blocking

Crossbar switches

Virtual output queues

Fair queueing Service differentiation

Link speed scaling

Memory scaling

Weighted fair

queueing

Deficit round robin

DiffServ, Core

Stateless

Internal bandwidth Scaling of internal

bus speeds

Reliable striping

Measurement Link speed scaling Juniper's DCU

Security Scaling in number and

intensity of attacks

Traceback with bloom

filters

Extracting worm

signatures

Figure above previews the main router (bridge/gateway) bottlenecks covered in this book,

together with causes and solutions.

First, all networking devices forward packets to their destination by looking up a forwarding

table. The simplest forwarding table lookup does an exact match with a destination address, as

exemplified by bridges. Unfortunately, population scaling has made lookups far more complex

for routers. To deal with large Internet populations, routers keep a single entry called a prefix

(analogous to a telephone area code) for a large group of stations. Thus routers must do a more

complex longest-prefix-match lookup. Many routers today offer what is sometimes called service

differentiation, where different packets can be treated differently in order to provide service and

security guarantees. Unfortunately, this requires an even more complex form of lookup called

packet classification, in which the lookup is based on the destination, source, and even the

services that a packet is providing. Next, all networking devices can be abstractly considered as

switches that shunt packets coming in from a set of input links to a set of output links. Thus a

fundamental issue is that of building a high-speed switch. This is hard, especially in the face of

the growing gap between optical and electronic speeds. The standard solution is to use

parallelism via a crossbar switch. Unfortunately, it is nontrivial to schedule a crossbar at high

speeds, and parallelism is limited by a phenomenon known as head-of-line blocking. Worse,

population scaling and optical multiplexing are forcing switch vendors to build switches with a

large number of ports (e.g., 256), which exacerbates these other problems. While the previous

bottlenecks are caused by scaling, the next bottleneck is caused by the need for new services.

That raises an issue of providing performance guarantees at high speeds ,for which the issue of

implementing so-called QoS (quality of service) mechanisms is to be studied. Another bottleneck

that is becoming an increasing problem: the issue of bandwidth within a router. It describes

sample techniques, such as striping across internal buses and chip-to-chip links.

CHARACTERISTICS OF NETWORK ALGORITHMICS

Network algorithmics is an interdisciplinary approach because it encompasses such fields as

architecture and operating systems (for speeding up servers), hardware design (for speeding up

network devices such as routers), and algorithm design (for designing scalable algorithms).

Network algorithmics is also a systems approach, because it is described in this book using a set

of 15 principles that exploit the fact that routers and servers are systems, in which efficiencies

can be gained by moving functions in time and space between subsystems.

